Tag Archives: math teaching

Year 12, Day 0

This week teachers headed into school to prepare for next week and students’ return. This will be my twelfth year!

My teaching this year will include more computer science than ever before:

  • AP Computer Science Principles (full year)
  • AP Computer Science A (full year)
  • Foundations of Computer Science  (spring)
  • Computer Integrated Manufacturing (fall)
  • Precalculus independent study (fall, three students, three separate periods)

I’ll also be working with our new engineering teacher and our librarian+new-computer-science-teacher to help them with their lessons, and collaborating with two geometry teachers around standards-based-grading.

Extracurricular activities and competitions:

  • Coding Club (app development, cybersecurity, & more)
  • Women’s Transportation Seminar’s “Transportation You!” Mentoring Program
  • TRAC bridge builder competition
  • CyberPatriot competition
  • STEM Competition
  • possible (in my mind, I want to do each of these this year): Cyber Movie Mondays, Saturday AP & PLTW study groups, Girls Who Code club
  • probably several others…

Ongoing projects that will occupy some of my time this year include:

  • Comp Hydro (teaching hydrology and flooding through computational simulations & modeling, in partnership with the Baltimore Ecosystem Study)
  • MyDesign (engineering design process app and learning management system, in partnership with NSF & the University of Maryland)
  • Internet of Things project to measure air quality and other environmental factors in schools (in partnership with Cool Green Schools, Johns Hopkins University, and Morgan State University)
  • Continuing work toward my Master’s Degree in Computer Science (taking “Artificial Intelligence ” course this semester)
  • Baltimore City Engineering Alliance, a nonprofit 501(c)(3) we created to provide opportunities to Baltimore City students to further their engineering education, and for which I am treasurer

School starts for students on Tuesday, after Labor Day for the first time in my twelve years here teaching in Baltimore. Wish us luck!

Leave a comment

Filed under computer science, engineering, math, teaching

Roots of Unity Final Projects

 

These are the results created last November for the art/math integration project described here.

 

By the way, happy pi week everyone!

Pi Week

Pi Week

Leave a comment

Filed under math, teaching

Art Integration: Roots of Unity & String Art

I talked with an art teacher this afternoon about ways to integrate art and math into a project. She had some great ideas, plus we came up with more ideas in the course of our discussion, many of which I plan to try for Algebra 2 or Precalculus (both which I teach this year, fall and spring respectively). Geeking out while discussing the intersection of math and art reminded me of this awesome collaboration and its result from a few years ago!

Our first idea (in terms of implementing soon) was some colorful string art crossed with a discussion of the roots of unity, since my students are (today) using and graphing complex numbers for the first time. Math teachers, art teachers, and any interested others, check out this rough draft of the project and let me know any thoughts and advice:

Roots of Unity Project

 

Colorful "string" art on the 17 th roots of unity

Colorful “string” art on the 17 th roots of unity

2 Comments

Filed under math, teaching

It’s Pi Day!!!.

It’s that time of year again: spring is almost here, and you can almost feel a warm mathematical breeze on the air. It’s…

Pi Day!!!.

Since the number pi (π) is approximately 3.14, and today is 3/14, today is sort of a mathematical holiday. (You may have noticed that I’ve included approximately 3.14 exclamation points above and in the post title!)

I started my celebration this morning with some coffee iced with pi-shaped ice cubes:

Pi Iced Coffee

Pi Iced Coffee

Additionally, I noticed today that I follow exactly 314 people on twitter:

Hey look - I'm following about 100pi people!

Hey look – I’m following about 100pi people!

(OK, I admit, I followed one new person today to get that to work out 🙂 )

Today, in addition to celebrating both the number pi and all sorts of mathematics, it’s time to start getting ready for the best pi day celebration of our lifetimes, which will be held in two years: 3/14/15 at time 9:26:53. This will be a much more accurate representation of pi than we celebrated just over an hour ago (at 3/14 1:59). Though perhaps we missed an even bigger party four centuries ago on 3/14/1592 6:53:58.

A few notes, links, and cool things for this pi day:

  • Math geeks can even talk about their mania for this amazing number in the form of a palindrome: “I PREFER PI”!
  • It seems that pi day is getting more popular: Companies like Oreo and GE are getting in on the action!
  • Check out this video, where a few people use actual pies to calculate pi (from http://www.numberphile.com/videos/pie_with_pies.html) :

Lastly, I hope you all can read (and would agree with) the following t-shirt, tweeted by NSBE:

Picture from NSBE

Picture from NSBE

1 Comment

Filed under math, teaching

Happy 12-12-12 Day!

Perhaps it could be called duodecimal day if you look at the numbers, or ternary day if you look at the digits. In either case, have a wonderful 12-12-12 day!

After being treated to a dozen similar days over the last few years (here, e.g.), we must now alas face a desert stretch of a few weeks longer than eighty-eight years until the next time the month, date, and year will all align.

Though at least we’ll have 11/12/13 next year, and 12/13/14 the year after. And of course the best pi day of our lives on 3/14/15 (at 9:26:53am). So I guess, even without repeated numbers, we still have a few good years ahead of us 🙂 .

Leave a comment

Filed under math

Phi Project

So, as I explained yesterday, I decided to create a project centered around golden ratio, phi (φ) ≈ 1.6180339887, and the associated Fibonacci sequence 0,1,1,2,3,5,8,13,…. My classroom has computers, so I had students go back and forth between watching parts of Vi Hart’s videos (123) on the subject, and doing or reflecting on something mathematical, artistic, or biological.

Here is my project:

I think it’s a little bit lighter weight than some of my other projects. But it does connect to our work with quadratic equations (which we are just wrapping up). And it gives my students a chance not just to see math in the world, but also to think about why our world is mathematical.

The students seem to enjoy working on the project so far. Either that or they just liked the pineapple we ate (after, of course, counting the spirals on it!).

1 Comment

Filed under math, teaching

Math is in the Air!

Math is in the air this week as we close in on that most special of mathematical holidays, pi day.

Pi Day is only a week away, and I for one can’t wait! I’ve emailed our school secretary so pi day will be included in our weekly bulletin. I’m trying to consciously make students appreciate some of the cool things about math (I try to do this all the time, but sometimes get stuck on autopilot teaching procedures and projects).

In preparation for Pi Day, I’ll be posting some links to amazing mathematics over the next week.

To begin, you all remember the interdisciplinary geometry-art project on fractals I did last year? Well, these middle schoolers have gone even deeper into the world of fractals and produced some beautiful works of art, as part of their Fractal Club! Go to this link and check out the video. (Thanks to Ceilon Aspensen for sharing the link on facebook.)

Have a great pi week, and I’ll see you again soon!

1 Comment

Filed under math, teaching

Good PD

Like many teachers, I have suffered through some pretty awful professional development (PD) days. Some where we are read to off a PowerPoint slideshow, one of the techniques we are told is not good teaching practice. Others are more interactive (e.g. think-pair-share) but still boring and/or not relevant to actual teachers.

I am a firm believer that PD needs to be much more self-directed to be effective. We, as teachers, are professionals. As such, we can be trusted to work toward our own professional growth.

I get so much out of reading blogs by and tweeting with other math teachers–including lesson ideas, projects, worksheets, innovative techniques, clear explanations, and feedback on my ideas. Mythagon does a great job explaining the value of the math blogging/tweeting community here. The engineering education community is smaller, but I’ve worked to create and find spaces for that collaboration to occur as well, including by creating an online course to share resources with other engineering teachers in Baltimore City, and by starting this very blog.

In an official PD Day setting, where teachers have school but kids don’t, what could a more self-directed PD look like? It could include time to develop and grow a virtual professional learning community (blogs, twitter, as described above). It could include time to collaborate with other teachers in the building or district, self-selecting colleagues in your subject area or outside it, and deciding as a group what topics need to be discussed. It could include a variety of seminars/presentations, each led by teachers, of which you can pick which ones to attend that you need the most development in.

The best PD is that which I can use in the classroom the next day or week or month. Some of the best days of PD for me personally have come from a series of workshops organized specifically for PLTW engineering teachers, through the Community College of Baltimore County and the Time Center. They’ve been offering these trainings for the past several years, and recently received an NSF grant to expand their ongoing-PD model to other schools and states across the country.

Crane, built from FischerTechnik parts and programmed via RoboPro

I attended one of these PD’s a few weeks ago about using and programming with FischerTechniks and RoboPro. We learned advanced programming techniques (variables, subroutines, displays, inputs/outputs, commands & operators, branches and wait fors). We applied some of these techniques to arithmetic operations, and some to operating the crane you see above.

For the second half of the day, we had time to complete a project of our own choosing. I needed some help and practice time with pneumatics, as they were not part of my original training in the Principles of Engineering and Computer Integrated Manufacturing courses but have since been added to the curriculum in both. To use the new curricula, we had to purchase supplemental kits, since our FischerTechnik kits did not come with pneumatic components. So this was still pretty new to me, and I really valued the time I had to explore, learn, and get help from both the professor and a teacher-classmate. We built the simple pneumatic system you see below, which will store compressed air in the tank using a motor and cylinder pump system, then convert the pressurized air to vertical or lateral motion. This has been especially useful, since I’ve been using the instructional resources provided that day, plus my greater understanding of this topic, to teach pneumatics and fluid power to my CIM students this week!

Our pneumatic system

I shall be attending another PD this Friday at CCBC to improve my skills in using Autodesk Inventor, a 3D modeling software.

_____________________________________

It’s down to the home stretch for both Mustaches For Kids and #NaBloPoMo!

Please support my moustache & Baltimore students by donating at DonorsChoose via my page. Plus, if you give now, you can use the codeword JOLLY and have your donation matched!

Also please support my partners in Baltimore’s NaBloPoMo by visiting and commenting at their blogs:

Only one day left in November – we’re almost through!

Leave a comment

Filed under engineering, teaching

November in Geometry

Although this is my sixth year teaching, I’ve been struggling with classroom management issues this fall in my last-period Geometry class. So we haven’t been able to do some of the cool projects I talked about last year (click the Geometry tag to see more). And a few topics we haven’t been able to delve into at quite the same level as I could with a more-motivated group of students.

A few details on some topics we’ve worked on during the past month or so:

The lesson on three-dimensional polyhedra went fairly well for the first two parts. Students constructed polyhedra from nets and by building their skeletons out of gumdrops (vertices) and toothpicks (edges). They discovered the relationship between vertices, edges, and faces found by Euler (V+F=E+2). But when I tried to bring the whole class to proving that only five regular polyhedra exist, I lost 80% of the class. I don’t know if it was too many steps, too long for their attention spans, an aversion to the logic of proofs, or the overall class dynamic. I don’t believe the math was too complicated for them (it just has to do with angles in regular polygons, spatial relationships, and our previous topic – tilings of the plane). I provided a sheet for taking guided notes. But much of the class turned that sheet in without having taken any notes.

Some of the more successful lessons have been a few that tied into what my students were learning in their engineering class. In late October – early November, my sophomore Geometry students were building and analyzing truss bridges in their Principles of Engineering course. Several teachers got together to plan lessons in various subjects that tie into the topic of bridges. In October, near the beginning of that unit, I did a lesson on the strength of various shapes. Students tried to use paper to hold the most books at least one inch off the table. They constructed a bridge that could hold the most rolls of pennies, using just one index card. And another bridge of multiple index cards, designed for length.

A couple weeks later, after they had developed designs in the engineering class, I had them analyze some of the geometry of triangles. This connected their bridges to what we were currently talking about in Geometry, with triangle congruence, proof, naming, and the Pythagorean Theorem.

Bridge Geometryhttp://www.scribd.com/embeds/73632593/content?start_page=1&view_mode=list&access_key=key-1xgwxwz3mcqb0iig9brt//

We’ve also learned about isosceles triangles, angle relationships, and circles in the past month.

_____________________________________

Reminders: Please support my moustache & Baltimore students by donating, and please support my partners in Baltimore’s NaBloPoMo by visiting and commenting:

Leave a comment

Filed under math, teaching

Day Before

Attendance was light today, as always on the day before a holiday like Thanksgiving or Christmas break. My eleventh grade engineering class was close to being there in full force [of those who are normally there], which I was proud of. That group I have developed a positive relationship with, and made clear I was expecting them today, and that we would be learning/doing new things today. My tenth grade geometry class was much fewer in number. They are (relatively) new to the program/academy, and I haven’t built up as good a relationship with them yet. It is also last period – some who had come earlier in the day may have left out by then for an early Thanksgiving break.

A few students who came today said they weren’t doing anything in other classes, why am I making them do work? I wish that, like other school systems, we had today off. Or at least a half day, like other systems. But if we are here and have school, it is a normal day of lessons: we are learning new things, and the work we are doing is important. I try to emphasize that to students in my explanations, as well as show by example.

In Geometry, we completed an exploration into how to construct a circle that goes through three predetermined points. This is one of the top three skills related to circles that we learn. Those who finished early played a game of polygon capture. In the small setting, I was able to really push their thinking about why certain things were true (i.e. proofs of what/how we were constructing circles).

In CIM, we reviewed reading programs that control a robotic arm, worked on analyzing them critically, both answering questions and filling in missing parts of a program. This is a skill vital to their understanding of the work we do in the class (reading, writing, and analyzing programs of different types is probably 75% of the course material) and therefore also important to the final exam that can help them earn college credit for their engineering coursework while still in high school. After that, students added to their online portfolios.

_____________________________________

Reminders: Please support my moustache & Baltimore students by donating, and please support my partners in Baltimore’s NaBloPoMo by visiting and commenting:

2 Comments

Filed under engineering, math, teaching